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Abstract-The effects of diffusive cross-coupling on an isothermal natural convection boundary layer in a 
large SC fluid has been studied. Results show that the off-diagonal diffusion coefficient is important 
when the appropriate ratio, /?12//122 or P2,/bz2, is larger than approximately lo- ‘. Uphill diffusion and 
accompanying compositional extrema may result when p,2 z & or p,2 < 0 for component 1 and when 
pz, > 1 or p2, i 0 for component 2. Counterflow may result when pzl < 0 or /?I z < 0 even for positive 
buoyancy ratios. Effective binary diffusion coefficients are inadequate for representing multicomponent 
systems with large off-diagonal diffusion coefficients. Published determinations of the full diffusion matrix 
for several multicomponent systems imply that neglect of off-diagonal contributions to the chemical flux 
may lead to large errors in mass transfer rates in multicomponent systems of geochemical and industrial 

importance. 

INTRODUCTION 

NATURAL convection boundary layer flows have 
been extensively studied over the years. Flows with 
a single buoyancy source, either thermal [l-6] or 
compositional [2,7, 81, have attracted the most atten- 
tion. Flows with two sources of buoyancy, in particular 
combined heat and mass transfer [9-131, have been 

studied less thoroughly. Diffusive cross-coupling is an 
intriguing aspect of such flows that has been inad- 
equately considered. An exception is the study by 
Sparrow et al. [13] of free convection from a hori- 
zontal cylinder in a helium-air mixture. Their numeri- 

cal results showed that the Soret effect was negligible. 
but that the Dufour effect significantly altered heat 
transfer as the mass transfer increased. Similar analy- 
ses for incompressible fluids have not been made. 

Phenomenological coupling analogous to the Soret 
and Dufour effects also occurs in isothermal, multi- 
component fluids. Measurements of the diffusivity 
matrix for ternary systems are available for some gases 
and liquids [l&17]. Table 1 lists diffusivities for the 
slag systems CaO-Al@-SiO, and K,GSrO-SiOz 
and a seawater analogue, NaCl-MgCl,-H,O. Note 

that one or both off-diagonal diffusion coefficients, 

D,z and D,,, are large compared to the on-diagonal 
diffusion coefficients, D, , and D,,. This is by no means 
uncommon, judging by the data cited above. 

Our interest is in natural silicate liquids (magma). 
In recent years several geologists have proposed that 
boundary layer flows play a key role in the chemical 
evolution of crustal magma chambers [18, 191. These 
authors, by necessity, utilize the formalism of effective 
binary diffusion theory to treat mass transfer along 
subvertical walls in magma chambers filled with com- 

plex, multicomponent magma. It is important to note, 
however, that laboratory studies on metal oxide-silica 
multicomponent melts and aqueous multicomponent 
systems show that diffusive cross-coupling can be 
extremely important. In fact, in some systems off- 
diagonal contributions to the flux of a given species 
may be larger than corresponding on-diagonal terms 

(see CaGAl,O,-SiO, in Table 1). Any conclusions 
regarding rates of mass transfer in magma chambers 
based on the effective binary approach must remain 
tentative until either laboratory studies or molecular 
dynamics simulations [20] provide sufficient infor- 
mation on the complete diffusion matrix for an 

n-component silicate melt of natural composition. 
Earlier studies [19] of the role of convecto-diffusive 
sidewall boundary layers in magma chambers may 
be seriously in error due to an inadequate account 
of diffusive cross-coupling. 

This study quantifies the effects of diffusive cross- 

coupling on natural convection boundary layer flows 
in an incompressible fluid with two buoyancy sources. 
The equations are formulated for an isothermal, ter- 
nary system with phenomenological representations 
for the chemical fluxes. Our analysis exploits the fact 
that many fluids, including slags, aqueous solutions 
and liquid metals, have large Schmidt numbers. In 
addition we present results for which the fluid vis- 
cosity is also a function of composition. This latter 
case is important in geochemical and geothermal 
applications [21, 221. We will also show that effective 
binary diffusion coefficients (EBDCs) are inadequate 
for representing multicomponent systems with large 
off-diagonal diffusion coefficients. Elsewhere we will 
apply the results of this study to SiOz and H,O trans- 
port in crustal magma chambers. 
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coefficient of variation for Di with wi, Greek symbols 
equations (At) 01, 
coefficient of variation for viscosity with 
w,, equation (2) a, 
effective binary diffusion coefficient, 
equations (Al) Yi 

phenomenological diRusivity matrix 
stream function in similarity variable r 
space, equation (9b) 6i 

length Grashof number, 
gcr ,A6 ,L”/v;, g 
acceleration of gravity 
characteristic length, (4a~~~~~~A~~) If3 v 
non-dimensional mass flux, 
ji[~3ga,D:,A~t,AuS?j4v~]-“3 ; 
height of plate @i 

Schmidt number, v,/D, , 
Sherwood number for ith component, AC& 
equations (lo), (1 l), and (AS) 
non-dimensional streamwise velocity, 

coefficient of compositional expansivity, 

- (IlP)(W~&) 
non-dimensional phenomenological 
diffusivity matrix, (DVAc3jD, ,Ac$ 
concentration in similarity variable 
space, equations (SC) and (9d) 
buoyancy rate, ~~A~~/~,A~~, 
boundary layer thickness for ith 
component 
spatial coordinate in simila~ty variable 
space, equation (9a) 
kinematic viscosity 
density 
stream function 
non-dimensional weight fraction of ith 
component, (~i-tii~)/Ac5~ 
concentration difference across the 
boundary layer, (6~W-c5,_). 

WV, Subscripts and superscripts 
non~dimensional transverse velocity, i,i refer to the ith orjth chemical 
~~~~1~~ component 
non-dimensional stream~se coordinate, W value of a quantity at the plate surface, 
Z/h y-o 
non-dimensjonai transverse coordinate, 03 value of a quantity in the fluid bulk 

Ylh. overbar denotes dimensional quantities. 

Table 1. Phenomenological diffusion coefficients (Di, ha.ve units of m2 s- ‘) 

System 

40 wt % CaO (If? 
20 wt % At& (2) 
40 wt % SiOz (3) 
21.5 wt % r&O (I)$ 
I&O wt % sro (2) 
60.5 wt % SiUi (3) 

0.489 M NaCl (l)§ 
0.051 M MgCIZ (2) 

H,O (3) 

Dl, 

tO-‘C 

9.25 x lo-l4 

1.4x 1o-9 

D!, &I Lf,, Ref. 
_- 

-2.8 x IO-” -4.2 x 10”. ” 7.3 x 10.. I t its1 

1.72 x iO-lS - I.1 x 10-13 10-l’ 1161 

7.1 x lo-‘” 2.6x lo-” 7.4 x IO- I0 1171 

t T = 1500°C. 
$ T = 806°C. 
5 T = 25°C. 

MAT~E~A~CAL DEVELOPMENT 

Consider a flat vertical plate bounding a Large body 
of jncompressib~e, isothermal fluid. The x-coordinate 
axis is vertical and extends upwards from the leading 
edge while the y-coordinate axis is ~~end~cu~ar to 
the plate and is measured from the surface of the plate. 
Velocities I( and o are parallel to the x- and y-axes, 
respectively. At the plate, two solute species are main- 
tained at the constant weight fractions G,W and GzW 
which are greater than their weight fractions in the 
b&k fluid, W,, and W,,. Following the usual practice 

in free convection, the fluid density is considered con- 
stant except in deriving the buoyancy terms. For this 
buoyancy force we assume fluid density is a linear 
function of composition as given by 

P = Pmrl -ai(~~-~,t,>-n,(c;i*-ts,,)l. (11 

Compositional expansivities are given in Table 2 for 
the three systems listed in Table 1 and for magma% 
Since density measurements are not readily available 
for the slag systems and magmas, we have estimated 
tli using densities calculated by the method of ref. f23J. 
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Table 2. Density function @ is in kg m- ‘) 

System a2 P Ref. 

40 wt % CaO (1)t 
20 wt % A120, (2) 
40 wt % SiO, (3) 
21.5 wt % K,O (I)$ 
18.0 wt % SrO (2) 
60.5 wt % Si02 (3) 
0.489 M NaCl (I)$ 
0.051 M MgCl, (2) 

H,O (3) 
Basaltic magma : 

HZ (1) 
Si02 (2) 

-0.28 1.5 x 1o-4 2681 

-0.036 -0.61 2562 

-6.82 x 1O-4 -8.04x 1O-4 1020.78 [171 

2.0 0.3 2278 1321 

t T = 1500°C. 
$ T = 806°C. 
0 T = 25°C. 

As long as dOi is sufficiently small that ~(~86~ << 1 the 
linear approximation is valid. We further require a, 

and x2 have the same sign although, significantly, we 
will show this is not a sufficient condition for avoiding 
opposed buoyancy effects. 

Since silicate liquids have strongly composition- 
dependent viscosities, the kinematic viscosity is made 
a function of composition 

v = v,exp[B,w,+B,o,]. (2) 

This exponential viscosity law adequately describes 
the behavior of silicate liquids over a wide com- 
position range [22, 241. 

Using the boundary layer approximation, con- 
servation of mass and momentum are given by equa- 
tions (3) and (4) in non-dimensional form. Note that 
the length scale has been chosen so that, without loss 
of generality, a Grashof number does not appear in 
the momentum equation 

au a0 
--f-=0 
ax ay 

ug +v3” = (w,+Tw*)+exp[B,w,+B,o,] 
ay 

(3) 

’ ay* 1 az”+B auaw, I B auaw, 
‘8~ ay 'ay ay I . (4) 

In order to write conservation equations for the two 
chemical components, we use the generalization of 
Fick’s law to a ternary system 

j, = -(V~,+P,*V%) 

j2 = -(P21Vw,+B22V~*) 

W 

(5b) 

where the solute species are numbered so that 
D, , 2 D2*. We assume that the diffusivities are not 
composition dependent. Although Gupta and Cooper 
[25] have shown that this cannot be true in general it 
seems to be a reasonable approximation as long as 
composition variations are small. Over the com- 

positional range of the experimental diffusion couples, 
the measured diffusivities in Table 1 are essentially 
constant, for example. In order that the inter- 
diffusivity matrix has real positive eigenvalues [16], 
the following conditions must be satisfied : 

18221 s 1 

B 22 3 812821 

(1 +P22)* 2 4(822-812821). 

(64 

(6b) 

(6c) 

Allowable combinations of the /&lie within the shaded 
region of Fig. 1. 

We also consider the pseudo-binary approach for 
representing the fluxes. This only requires two EBDCs 
which we have made functions of composition. Devel- 
opment of conservation equations for pseudo-binary 
and full ternary formulations are similar so only the 
latter will be presented below. The appendix contains 
corresponding equations for composition-dependent 
EBDC. 

With these expressions for the fluxes, the con- 
servation equations for solute species 1 and 2 are 

1 (74 
am, am2 i 

yg +v- = 5 
a%, 

ay 
8217 

a%, 

ay 
+I3227 ay 1 . (7b) 

The usual velocity boundary conditions for free 
convection are no slip at the wall and zero velocity in 
the ambient medium far from the wall. If e& amd &2w 
are maintained by injecting the solute at the wall, the 
normal velocity will not be zero ; however, when the 
mass transfer rate is small and the concentrations 
are low, the normal velocity will also be small [26]. 
Therefore, relevant boundary conditions are 

(co,-1)=(w2-l)=u=v=O at y=O 

w,=w2=u=0 at y=co. 
(8) 
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FIG. 1. The thermodynamic constraints in equations (6) require that fi, ?, j&, and fiz2 lie in the shaded area 
of this graph. 

Equations (3), (41, (7) and (8) can be reduced to 
ordinary difTerentiaI equations by use of the similarity 
variable method. For a large Schmidt number ffuid, 
the problem can be divided into an inner com- 
positional boundary layer and an outer velocity 
boundary layer by introducing a stretching trans- 
formation [3-S, 8, IZJ. The outer problem need be 
solved only once since fluid in the velocity boundary 
layer is isocompositional. The outer solution and 
matching procedure is presented elsewhere [5, 81. 
The stretching transformation eliminates advection 
terms in the momentum equation for the inner 
compositional boundary layer. AdditionaIly, the 
condition that shear stress vanishes at the edge of 
the compositiona boundary layer replaces the zero 
vetocity condition in conditions (8). 

introducing stretched similarity variables 

9 = (3Sc) t’4_yx- U4 (9a) 

f(s) = ~~4(3~c}3~~~-3~4~ (9b) 

Y,(V) = a1 (9c) 

Y2(yl) = w2 (9d) 

and taking the limit as SC tends to infinity leads to the 
following set of ordinary differential equations where 
primes denote differentiation with respect to q : 

f”‘+@,Y; +~,y;v’ 

+expI-~~~y,+B,y3lty,+~y,) = 0 WI 

Y~+~~~~~+~~; = 0 WI 

~~*Y~‘+~z*~~+~~~ = 0 WI 

f(O) = f’@o) = Y I(O) - 1 = Yz(0) - 1 

= f”(a) = y,(Go) = Yz(co) =z 0. (8’) 

The mass flux at the wall is a particularly important 
quantity which can be calculated by evaluating equa- 

tions (5) at y = 0 and integrating over the plate 
surface. Sherwood numbers are obtained by dividing 
this mass flux by an equivalent diffusive flux in the 
absence of advection and multi~omponent effects, 
equations (lOa) and (lob). Notice that reference 
diffusivit~~ for components I and 2 are their cor- 
responding on-diagonal dit%&ities 

Sh 
1 t 

I” s ~a,14 o 
j;,dl (lOa) 

Sh,=i 
L 

s P@&% o 
& d5!. (lob) 

Integrating the mass Ruxes Ieads to the foifowing 
expressions for Sk, in terms of stretched similarity 
variables : 

RESULTS 

Equations (4’), (7’), and (8‘) contain six dimen- 
sionless parameters: B1, Bz, fit?, fizll /Yz2, and r. Table 
3 lists values of these parameters for the systems in 
Table 1. Chosen compositions approximately cor- 
respond to the diffusjon couples used to measure 
the diffusivity matrix. The on-diagonal diffusion 
coeRcients are both positive for ati systems for which 
data are available therefore we only consider flz2 10. 
Also we consider a very restricted range of viscosity 
parameters appropriate to silicate liquids. This part 
of the study involved approximately 200 numerical 
solutions. 

Equations (4’), (A4) and (t3’) for EBDCs contain 
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Table 3. Dimensionless parameters 

System 

40 wt % CaO (1)t 
20 wt % A1203 (2) 
40wt % SiO, (3) 
21.5 wt % K,O (I)$ 
18.0 wt % SrO (2) 
60.5 wt % SiO, (3) 

0.489 M NaCl (1)s 
0.051 M MgCl, (2) 

H,O (3) 
Basaltic magma : 

;g (1) 
2 (2) 

t T = 1500°C. 
$ T = 806°C. 
5 T = 25°C. 

0.08 0.02 -6.7 x lO-4 -0.07 -1.68 0.73 

0.0025 0.025 170 0.19 -0.11 10-4 

0.003 0.002 0.78 0.33 0.03 0.52 

0.03 0.15 0.75 - - 

eight dimensionless parameters : B,, Bz, A, ,, A, *, A2 ,, 
A,,, and I-. We have considered a very limited range 
of these parameters (approximately 60 numerical 
solutions) for the purpose of our comparison. 

We present our results in four sections. The first 
section reviews work on the uncoupled equations. The 
second section details the effects of diffusive cross- 
coupling on an isoviscous fluid (B, = Bz = 0). The 
third section presents results for two particular sets of 
non-zero viscosity parameters (B, = -2, Bz = 3 and 
B, = -5.5, B, = 3.7). These particular values were 
chosen because of relevance to boundary layer flows 
in basaltic and silicic magma chambers, respectively, 
where component 1 is HZ0 and component 2 is SiOl 
[27]. The fourth section deals with effective binary 
diffusion coefficients. Results are presented in terms 
of the mass transfer at the plate (Sh, and S/r,) ; vel- 
ocity and composition profiles ; and boundary layer 
thicknesses (Si is the distance from the plate such that 
for all q > St, y, < 0.01). 

Uncoupled equations 

This system of equations is obtained from equations 
(4’) (7’), and (8’) by setting B, = B, = j3,2 = p2, = 0, 
which leaves only two dimensionless parameters, pZ2 
and r. Some analytic and numerical results are avail- 
able [2, 9, 111, but these cover only a limited part 
of the /3&Y parameter space. Numerical solutions 
obtained during the course of this investigation span 
10m6 i pZ2 < 1 at r = 0.375, 0.75 and 0 < I- < 100 
for /? 22 = lo-‘. 

First we examine the effect of I- on concentration 
and velocity fields (/IZ2 = lo- ‘). As r + 0 the ternary 
system behaves dynamically like a binary system 
because the momentum equation is decoupled from 
the conservation equation for component 2. In this 
limit f’( co), S/r, and S/I, are smallest while 6, and 6, 
are both at a maximum (Table 4). As r increases, 
f’(a) and the mass flux of both components increases 
while the boundary layers become thinner. In 
addition, since component 1 contributes little to the 

Table 4. Solutions for the uncoupled equations for a range 
ofl- 

Sh, Sh, 

l- f’(a) 6, 6, [GrL SC] “4 [Gr, SC] “4 

0.0 0.882 3.22 1.29 0.670 1.580 
0.375 0.902 3.17 1.25 0.686 1.630 
0.75 0.920 3.12 1.22 0.700 1.674 
1.0 0.933 3.09 1.21 0.709 1.702 

10.0 1.268 2.52 0.93 0.904 2.280 
100.0 2.945 1.59 0.56 1.465 3.802 

B, = Bz = p,z = 82, = 0; 822 = 0.1. 

buoyancy forces for large r, the maximum velocity 
occurs near 6 2. 

In a similar way jIZ2 affects the boundary layers. 
When this parameter is unity y, = yz. As jIZ2 
decreases, 8* decreases exponentially, approaching 
zero. In this limit, yZ = 0 almost everywhere in the 

boundary layer and the ternary system again behaves 
like a binary system. Consequently, 6, increases 
slightly and f’(co) decreases to the corresponding 
binary system values. Compare values of 6, and 

Table 5. Solution of the uncoupled equations for a range of 
P 22 

1.0 2.80 2.80 1.17 
0.9 2.83 2.70 1.14 0.384 
0.4 2.96 2.02 1.01 0.381 
0.2 3.04 1.57 0.948 0.378 
0.1 3.12 1.22 0.920 0.374 

lo-2 3.20 0.55 0.888 0.363 
lo-’ 3.22 0.25 0.883 0.355 
lO-4 3.22 0.116 0.883 0.350 
10-S 3.22 0.053 0.883 0.347 
lO-6 3.22 0.025 0.883 0.345 

0 0.333 

m is the exponent in equation (15). B, = BZ = p,* = /lzI 
= 0; 1- = 0.75. 
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f’(co) for the cases I = 0 in Table 4 and pZ2 = 10s6 
in Table 5. 

If the two components diffuse equally fast, bZZ = 1, 
then the compositional profiles are identical and the 
Sherwood numbers ]I I] are given by 

S/z, = Shz. = ~.67O(G~=~~)~~~(l fT’)“4. (12) 

Based on solutions in the range @,, > 0.5 and 
0.5 < r < 2, Mathers et al. [9] suggested the car- 
relations 

Sh, = 0.670(Gr,S~)“~(l+I-,/fl,,)“” (13) 

S/r, = 0.670(GrLSc)“4(1 +rJfizz)“4/l;2’8. (14) 

Our data support this correlation for S/z, but show 
that the correlation for Sh, is inappropriate when 
pZZ < 0. I. A more accurate correlation for ShZ is 

Sh, = 0.670(Gr,,Sc)‘~J(1+~~~ZZ)ii4~;~ (15) 

where m is a function of b12 (Table 5). In the limit of 
@22 CC 1, m approaches lj3 fl I]. 

For several reasons it is useful to consider the limit- 
ing cases of a single non-zero cross-coupling term, i.e. 
fl, 2 = 0 or bz, = 0. First, these special cases allow us 
the greatest freedom in choosing parameters. From 
Fig. 1 it is clear that all combinations of a positive f12? 
and the non-zero cross term meet the the~odynami~ 
constraints. Second, certain physical situations place 
these kinds of constraints on the di~usivity matrix. At 
the boundaries of the composition space one or both 
off-diagonal terms may vanish : /3,2 = 0 when ci51 = 0 
and fiZ, = 0 when C& = 0 [25]. Since the A& appear 
in the definition of &, one of the cross terms will be 
nearly zero when the concentration difference of a 
component is small. Third, these results provide the 
framework for interpreting solutions in which both 
cross-coupling terms are nonzero. 

A single off-diagonal diffusion coefficient only 
causes significant changes in one boundary layer 
since the conservation equation changes for only 
one species. The other conservation equation (for 
components 1 and 2, respectively, when fir2 = 0 
or flz, = 0) remains in a pseudo-binary form. The 
species the conservation equation of which remains 
pseudo-binary is unaffected by cross-coupling in one 
very important respect. The compositional profile 
of this component retains the same shape no matter 
how large the cross-coupling. 

First we set /3, Z = 0 in order to examine the response 
of the flow to f12,. From the Y2 profiles presented in 
Fig. 2, one can immediately see that diffusive cross- 
coupling adds a new dimension to the boundary layer 
equations. The solution of the uncoupled equations 
(b2r = 0) is a concave up curve with a maximum at 
~=Oandaminimumat~~~~.When~*,=lthe~~~ 
profile develops an inflection point yet the extrema 
remain at the edges of the boundary layer. The profiles 
for fizl = - 1 and 2, moreover, have an extremum 

inside the boundary layer. It is well known from 
diffusion couple experiments [lS, 161 that such 
extrema can also develop in the absence of convection. 

Uphill diffusion, the flux of a component up its 
concentration gradient, is the physical mechanism 
behind these concentration profiles. If uphill diffusion 
were inlpossible, a compositional maximum or 
minimum could not exist inside the flow for such an 
extremum would be a plane of no flux separating 
regions of opposing mass transport. The mass flux 
would be directed away from a maximum or 
toward a minimum, neither of which are physically 
meaningful. 

The condition for uphill diffusion of component 2 
is 

“&Y> = --(PZ,Y; +&?.Y;)Y; > 0. 

Note that j?*, must be nonzero for this condition 
to be satisfied. If fiZ2 were negative, the~odyn~ic 
constraints would require both jllZ and j&, to be non- 
zero (Fig. 1). In the case of a compositional maximum 
(e.g. the curve in Fig. 2(a) for pZI = 2), both the mass 
flux and compositional gradient are positive at the 
plate. Our work shows that flZ, must be larger than 
unity in order for a compositional maximum to 
develop. The smaller fi12, the closer to unity flZ, may 
be and still produce a maximum. 

Since Y’,(O) and y;(O) are both negative between the 
plate and compositional minimum (e.g. the curve in 
Fig. 2 for pZ, = -I), the requirement for uphill 
diffusion may be rearranged as 

Both quantities on the right-hand side are positive; 
consequently p2, < 0 is a necessary but not sufficient 
condition for uphill diffusion. ]flz, 1 must also be larger 
than approximately (1/10)/l,,. The mass flux is still 
positive in a zone next to the plate if the cross-coupling 
is this weak. As the magnitude of p2, increases, the 
plane of no flux moves toward the plate. Only for 
/&, 1 > PI2 can j, be negative at the plate. 

The velocity at tl = M) varies directly with f12, (Fig. 
3(a)). The increased concentration of component 2 
when &, > 0 causes larger buoyancy forces and 
greater velocities. In contrast, fi2, < 0 decreases YZ 
in the boundary layer which diminishes the buoyancy 
forces. Hence, f’(co) is smaller. It is important to 
note that where y2 < 0, the buoyancy force generated 
by component 2 is directed opposite the buoyancy 
force of component 1. Opposed buoyancy forces are 
generated even though CI, and cl* have the same sign, 
in contradistinction to the study of Nilson and 
Baer [12] in which opposed buoyancy forces are 
created by assigning cl, and CL~ opposite signs. For r 
greater than some critical value, the velocity at g = M 
will be zero marking the limit of unidirectional flow 
(Fig. 3(a)). This is also the limit of applicability for 
the stretching transformation and the equations 
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I I 1 I I I I I 

0 I 2 3 

T 
FIG. 2. Compositional profiles for component 2 as a function of j?*,. B, = B, = /3,2 = 0, jz2 = 10-l and 

I- = 0.75 for all curves 

as written [12]. We are currently exploring the 
boundary between upflow and countertlow for these 
equations. 

The relationship of diffusive cross-coupling to 
boundary layer thicknesses is also fairly simple (Fig. 
3(b)). The most striking feature of this diagram is that 
6, is only a function of /12, when /Iz2 < fi2,. In general 
cross-coupling causes 6, to increase with respect to 
the uncoupled solution. The only exception is when 
/12, is negative and smaller in magnitude than /Iz2. 

When /Iz2 c /12, we find that the proper mass trans- 
fer correlation for component 2 is 

% = 0.67O[Gr, Sc(l +&M-)(1 + 82 J-)1 “‘h 11822 

which corresponds to the linear portion of the curves 
in Fig. 4(a). When jIz2 > lj12,1 the S/z2 vs /Iz2 curve 
coincides with or closely parallels that for the 
uncoupled equations. 

Again very interesting behavior results when /IS, is 
negative. Recall that the condition for a compositional 

FIG. 3(a). Velocjty profiles as a function of PI1 and r. 
B, = B, = j?,2 = 0, j322 = IO-’ and r = 0.75 for all solid 
curves. Dashed curve shows the effect of increasing the buoy- 
ancy ratio when p2, is negative: II, = Bz = b,2 = 0, 
pz, = -I, pzz = 10-l and r = 1.05. Countertlow occurs at 

approximately r = 1.1. 

minimum is a negative mass flux in at least part of the 
boundary layer. In Fig. 4(b) we plot S/z, vs /Iz2 for 
p2, = - 1, -0.2 and -0.02. Each curve consists of 
two pieces divided by a vertical asymptote where 

3 

2 

co” 

I 

0 t 

I lo-’ 10-2 10-s I 0 -4 

B 22 

FIG. 3(b). Boundary layer thicknesses as a function of p2, 
and /?22. B, = Bz = p,? = 0 and r = 0.75 for all curves. The 
upper scale is for component 1 while the lower is for com- 

ponent 2. 
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‘04) 

4 

FIG. 4(a). Sh, as a function of j& for pZ, r 0. B, = B2 = 0 
and r = 0.75 for all curves. p,2 = 0 for all solid lines. 

Sh, = 0. Between fiZ2 = 1 and the vertical asymptote 
Sh, is positive. At first these curves follow the p2, = 0 
trend (cf. Fig. 4(a)), but decrease rapidly as the cross- 
coupling becomes strong enough to create a region of 
negative mass flux. For /I22 smaller than the vertical 
asymptote Sh2 is negative (i.e. mass transfer from the 
fluid to the plate). The appropriate correlation in the 
linear part of the ShZ vs & curve is identical to that 
given above. 

component I is only weakly dependent on f12 ,, but 

this is only really evident from the boundary layer 
thickness (Fig. 3(b)). Note that the magnitude of vari- 
ation in 6, with /IZj is quite small compared to the 
variation in SZ, particularly when bZ2 << 1. Unlike d2, 
the relationship between 6, and jLlZ2 is unaffected and 
6, decreases for p2, positive. Sh , changes by less than 
20% over the range of j?*, studied (Fig. 6(b)). 

Next, we set /3?, = 0 in order to examine the flow’s 
response to p,*. Compositional profiles for com- 
ponent 1, presented in Fig. 5 for a range of 8, 2 values, 
closely resemble the y2 profiles in Fig. 2. Again solu- 
tion of the uncoupled equations (j?, 2 = 0) is a concave 
up curve with a maximum at q = 0 and a minimum 
at q = 6, ; however, extrema may occur in the middle 
of the boundary layer when /3, Z # 0. The condition 
for uphill diffusion of component 1 is 

j,Y\ = (Y’,+81*YWl ’ 0 

and b, 2 must be nonzero to satisfy this condition. 
Interestingly enough, the conditions for maxima and 
minima are the reverse of those for component 2. It 
is sufficient for fl,* to be large compared with /LIZ2 
in order to produce a compositional maximum. For 
instance, @,2 = 0.5 and jIZ2 = 10e2 are one such set 
of parameters. The critical value of FL2 approaches 
zero as pZZ becomes very small. Compositional 
minima may result when /S, 2 < 0 yet /3,* < - 1 is 
required for j,, to be negative. 

The relationship between plZ and f’(co) is quite 
similar to that discussed above for pZ,. Although vel- 
ocities differ in magnitude somewhat the trend shown 
in Fig. 3(a) is the same for fii2. Opposed buoyancy 
forces due to component 1 arise when the value of B, 2 
is in the correct range to produce a compositional 
minimum. As I approaches zero the dominant buoy- 
ancy force is due to component 1 and counterflow 
may result. 

Note that ShZ (Fig. 4(a)) and & (Fig. 6(a)) differ 

FIG. 4(b). Shz as a function of jIZ2 for f12, -C 0. For each curve S’h, goes to zero at the vertical dashed line. 
The Sherwood number is negative for bZ2 smaller than this value. Solid lines terminate near the upflow- 

counterflow boundary. B, = B, = 0 and r = 0.75 for all curves ; in addition, p1 2 = 0 for the solid lines. 
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FIG. 5. Compositional profiles for component 1 as a function of j?,> B, = B2 = j& = 0, pZ2 = IO-’ and 
r = 0.75 for ail curves. 

from the uncoupled solution by less than 50% over 
the range of ,!3r2 in this study hence y; - 6; ‘. As fiZ2 
goes to zero, the cross-coupling contribution to the 
mass flux, which is proportional to ~2, increases. If 
/?, 2 is negative, the two components of mass flux must 
balance in such a way to keep Sh, positive. In fact 

6, - S2/lB,21 and Sh, -+ 0 for fizz CC 1. For example, 
S, = 6, when /Ii2 = - 1 (Fig. 6(a)). In contrast, S/r, 
is nearly constant for all pZ2 when fi i 2 > 0 (Fig. 6(b)). 
The large cross-coupling component of j, is offset 

0 I 
10-i 

I 
10-Z 

I 
10-3 IO‘4 

P 22 

FIG. 6(a). Boundary layer thicknesses as a function of BIz 
and bz2. B, = Bz = 0 and r = 0.75 forall curves, and j2, = 0 
except for the open symbols. Dashed lines are for 6, ; solid 
lines and open symbols are for 6,. Recall that when both off- 
diagonal terms are nonzero the thermodynamics restrict the 

range of p12 over which solutions are possible. 

by the compositional maximum which increases in 
magnitude as jiZ2 -+ 0. 6, does not participate in this 
balance and remains constant. 

Finally, we consider the effects of two off-diagonal 
diffusivities. It is instructive to consider the limitations 
imposed by thermodynamic constraints (6). Since 
there is a reciprocal relationship between the off-diag- 
onal terms 

(-:P:2+f822-L4)<812PZI <822 

if one is very large compared to these bounds, the 
other must be very small. Both cross terms can be 

I O-d?1 

I 10-l to-2 10-3 10-4 

P 22 

FIG. 6(b). S/z, as a function of &. Bi = B, = &, = 0 and 
r = 0.75 for all curves. For the solid lines &, = 0 also. 
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order one only when both are the same sign and when 

P 22 is order one. 
Perhaps the most interesting question is whether 

both components can display compositional extrema 
at the same time? We have found that the two com- 
ponents cannot both have maxima or both have 
minima. This is quite easily shown for maxima as long 
as the restrictions for a single off-diagonal term are 
still valid. Recall that p2, > I and ptz > fizz are the 
appropriate conditions ; however, this implies that 
fltzaz, > fi12 if both conditions are met. This viol- 
ates thermodynamic condition (6b). Similarly, the 
requirements for Sh , and Sh, negative are PI z < - 1 

and A, < -822, respectively. Again combination 
of these violates the thermodynamic constraints. 
Although this appears to allow compositional minima 
as long as S/z, > 0 and Sh, > 0, our work shows that 
this does not happen. Apparently the presence of both 
off-diagonal terms in the diffusivity matrix further 
restricts the occurrence of compositional extrema. 

In contrast, one component can have a maximum 
while the other component has a minimum. The Sher- 
wood number for the component with the minimum 
must be positive, since both contributions to the mass 
flux for that component are positive. For example, 

B < 0 is required to produce a minimum in the com- 
pzsitional profile for component 2 while a maximum 
in the component 1 composition profile implies 
;i;(O> > 0. Consequently, both terms in the com- 
ponent 2 mass flux 

.L = -82,1~;(O)-P*,Y;(O) 

are positive at the plate. 
The combination of one negative cross term and 

one positive cross term produces the most significant 
changes in Sherwood number and boundary layer 
thickness. Figure 4(b) shows that Sk2 remains positive 
for small /322 if p, z = 1 when /I*, = -0.2. Similarly 
Sh, becomes independent of pz2 when /Jr2 = - 1 if 
fi2, = 0.2 (Fig. 6(b)). 

These results must be applied with care because the 
scaled weight fractions lie outside the normal range. 
0 < y, < 1, for certain combinations of parameters. 
This happens whenever a compositional maximum 
or minimum develops. As a result the actual weight 
fractions could be unphysical (e& < 0 or 6, > 1) in 
parts of the boundary layer. Indeed, Gupta and 
Cooper [25] argue that the diffusivit~ matrix must be 
composition dependent to prevent this. 

Variable viscosity 

Although we have comparatively few variable vis- 
cosity results, they are sufficient to demonstrate gen- 
eral trends. This topic is most easily understood by 
considering the physics of the boundary layer. Since 
the stretching transformation removed inertial forces, 
equation (4’) represents a balance between viscous 
forces opposing the flow and buoyancy forces driving 
the Aow. Viscous forces depend on the boundary 
layer’s viscosity structure and may be substantially 

FIG. ?(a). Viscosity prOi& as a function of f12,. B, = -2.0, 
B, =L 3.0, fi,2 = 0, fizz = IO- ’ and r = 0.75 for all curves 

-L. 

0 

FIG. 7(b). Velocity profiles as a function of fiz, with com- 
position-dependent viscosity. B, = -2.0, B2 = 3.0, fit2 = 0, 

pzz = IO- ’ and r = 0.75 for all curves. 

altered if viscosity is a function of composition. 
Compensating adjustments in buoyancy are accom- 
modated principally through changes in boundary 
layer thickness. 

Figures 7(a) and (b) show viscosity and velocity 
profiles for several combinations of B,, B, and &,. 
These may be separated into three groups. 

(1) v 3 v, everywhere in the boundary layer. Vel- 
ocities are smaller and boundary layer thicknesses are 
greater than the corresponding isoviscous flow. 

(2) v < v, everywhere in the boundary layer. Vel- 
ocities are larger and boundary layer thicknesses are 
smaller than the corresponding isoviscous flow. 

(3) v 2 v, in part of the boundary layer and v f v, 
in the rest of the boundary layer. Adjustments in the 
force balance are much more complicated in this case. 

All parameters of the model play a role in deter- 
mining the viscosity structure. This means that an 
arbitrary viscosity structure cannot be imposed on the 
flow merely by choice of 3, and B,. The quantity 
B, + B2, however, defines v, since the constant con- 
centration boundary condition is applied there. If 
B,-i-Bz > 0 then v, > v,, and if B,+Bz < 0 then 
v, < Y,. The viscosity far away from the wall will then 
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IO- 3 

FIG. 8(a). Ratio of Sh, with variable viscosity to Sh, with 
constant viscosity as a function of p2, and pZ2. /II2 = 0 
and I = 0.75 for all curves. (a) p2, = - 1 ; (2) /?*, = 0; 
(3) /I*, = 1; (4) pZ1 = 2. Solid lines denote B, = -2 and 

B, = 3. Dashed lines denote B, = -5.5 and B, = 3.7. 

depend on the sign and magnitude of all parameters. 
We have considered two cases : (1) B, = -2 and 

Bz = 3; (2) B, = -5.5 and B2 = 3.7. We have used 
the method of Shaw [22] to calculate viscosities for 
silicate liquids with compositions corresponding to 
the desired wall and infinity values. Then we fit 
an exponential function, equation (2), to these vis- 
cosities. The first set of values correspond to a low 
SiOZ, low H,O magma (basaltic) while the second 
set correspond to a high SiO*, high H,O magma 
(rhyolitic). Although B, and B2 have the same sign 
for both, v, > v, in the first case and v, < v, in 
the second case. 

A convenient measure of the change due to com- 
position-dependent viscosity is the ratio of Sh, for the 
variable viscosity case to Sh, for the isoviscous case 
with all other parameters the same (Figs. 8(a) and (b)). 
When this ratio is greater than unity, variable viscosity 
caused steeper concentration gradients and increased 
mass fluxes. The reverse is true for a ratio less than 
unity. Sh, changes by less than a factor of three while 
the viscosity may vary by more than an order of 
magnitude (Fig. 7(a)). Variation in Sh appears to be 
proportional to the magnitude of B, + B2. 

The products B: = B ,/?, 2 and B: = B,P,, are use- 
ful for showing changes in velocity (Fig. 7(b)). The 
sign of B* determines the effect on the flow of com- 
ponent i. The cross terms determine which com- 

B 22 

1-3 

FIG. 8(b). Ratio of Sh2 with variable viscosity to Sh, with 
constant viscosity as a function of p2, and pZ2. p,2 = 0 
and I = 0.75 for all curves. (1) p2, = - 1; (2) pZ, = 0; 
(3) /I*, = 1 ; (4) /I*, = 2. Solid lines denote B, = -2 and 

B, = 3. Dashed lines denote B, = -5.5 and B2 = 3.7. 

ponent(s) are enriched or depleted in the boundary 
layer compared to the uncoupled equations. The sign 
of B, determines whether the change in concentration 
increases or decreases the viscosity. Positive BF means 
that component i will contribute to decreased veloci- 
ties. When negative that component will contribute 
toward increased velocities. Of course concentration 
changes affect buoyancy forces as well, particularly 
when compositional extrema are present, and may be 
more important than the viscosity changes. 

Effective binary d$iision coejficients 
For systems with three or more chemical com- 

ponents, measurements of EBDCs are much more 
common in the literature than phenomenological 
coefficients discussed above. EBDCs are the only data 
currently available for magmas, for example. Since 
experimental data necessary for calculating the pi, are 
generally unavailable, can EBDCs be used to approxi- 
mate the full phenomenological formulation? 

If one assumes the diffusion coefficients are not 
functions of composition, setting /I, z = pz, = 0 yields 
the pseudo-binary equations which have already been 
discussed. fizz, now defined as the ratio of reference 
EBDCs (DZm/Dlm), is the only parameter that can be 
adjusted to create the best approximation to the full 
phenomenological formulation. This method, utilized 
in ref. [19] for example, fails for two reasons. First, 
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the pseudo-binary equations contain an inverse 
relationship between (T2 and Sh2 while phenom- 
enological cross-coupling produces increases in both 
these quantities (Figs. 3(b) and 4(a)). For IL@-- 
SrO-SiO, 1281 the pseudo-binary fiZ2 is equal to 0.7 
which predicts a2 = 2.6 and Sh,/[Gr, SC] ‘I4 = 0.85. 
The phenomenological solution is SZ = 2.23 and 
Sh2/[Gr, SC]“~ = -245. The boundary layer thick- 
ness is reasonably approximated, but the magnitude 
and sign of Sh2 are seriously in error. A system such 
as NaCl-MgCl,-H,O would be better approximated 
since the phenomenological PI2 is close to unity. 
Second, constant EBDCs cannot produce com- 
positional extrema. This point has been discussed 
more fully above. 

In general EBDCs will be functions of cij, and &jr. 
Delaney and Karsten 1291 found that the effective 
binary diffusion coefficient of HZ0 in rhyolite melt is 
an exponential function of the HZ0 concentration. 
EBDCs for SiOZ have been measured in anhydrous 
melts ranging in composition from basalt to rhyolite 
[30, 311. We have fit these data to an exponential 
function as wel. Conservation equations for this func- 
tional dependence are included in the Appendix. 

Although we do not have phenomenological 
coefficients necessary for a quantitative comparison, 
a few qualitative remarks are in order. The trend of 
& vs pZ2 for composition dependent EBDCs (Fig. 9) 
is essentially parallel to that for constant diffusivities. 
As flZ2 becomes very small, composition dependence 
is comparatively unimportant, so all the curves con- 
verge. We have not shown a plot of ShZ because these 
trends also parallel the constant diffusivity solution. 
As a result, this form of composition dependence does 
not eliminate the problem of matching both 6, and 
S/z,. Several composition profiles are plotted in Fig. 
10. A component is either enriched or depleted in the 
boundary layer according to the sign of Dp These 
profiles are similar to those in Figs. 2(a) and 5 except 
that compositional extrema are not possible. 

CONCLUSIONS 

We have numerically simulated boundary layer 
flow in an isothermal ternary fluid driven by com- 
positionally induced buoyancy. The diffusive fluxes 
were modeled using phenomenologi~ai theory. Some 
attention was given to the affect of composition- 
dependent Newtonian viscosity. The major con- 
clusions of this study are summarized below. 

(I) The flow’s behavior is governed by the sign and 
magnitude of each element in the phenomenofogical 
diffusivity matrix 

1 P12 
L 1 Pz, P** . 

The off-diagonal elements, p, 2 and flZ i, are responsible 
for diffusive cross-coupling. The size of the off-diag- 
onal elements compared to the on-diagonal matrix 

3 

2 

43” 

IO-’ 10-z 

B 22 

FIG. 9. Boundary layer thicknesses as a function of j& 
for composition-dependent EBDCs. E, = B2 = A ,2 = 0 and 
r = 0.75 for all curves. (1) A,, = 2, AxI = 0, AZ2 = -1.5; 
@)A,,= AZ1 =AZ2=0;(3)A,, = -&A,, =0,Az2= 1.5; 
(4) A,, = 2, AZ, = 4, A,, = - 1.5. The upper scale is for 

component 1 while the lower is for component 2. 

elements (1, &) determines whether or not the cross- 
coupling significantly changes the boundary layers’ 
characteristics. pZ2 must be at least an order of mag- 
nitude larger than the absolute value of an off-diag- 
onal element in order to neglect that term. The fol- 
lowing statements apply when one or both off- 
diagonal elements are significant. 

(2) f’( co) is positively correlated with PI 2 and f12,. 
When /3, 2 and/or fiZ, are negative, counterflow is poss- 
ible for certain values of I. 

(3) Very strong cross-coupling is characterized by 
the formation of compositional extrema in the bound- 
ary layers’ interior. A maximum for component i may 
occur when the off-diagonal term in the ith row is 
sufficiently large compared to the on-diagonal term in 
the same column. A minimum for component i may 
occur when the off-diagonal term in the ith row is 
negative. Around the extremum one or more com- 
ponents lie outside the usual compositional range, 
0 < yi < 1. The components cannot both exhibit 
maxima or both minima, although one may have 
a maximum while the other has a minimum. 

(4) If ]/&,] > pZ2, ShZ is proportional to f12,/&. Sh, 
may be negative when the off-diagonal term in the ith 
row is negative and sufficiently large in absolute value 
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x 

FIG. 10. Compositional profiles using composition-dependent EBDCs. B, = BZ = 0, &* = I and r = 0.75 
for all curves. The dashed line is for component 1 and solid lines are for component 2. (1) A,, = -2.0, 
Al2 = AZ1 = 0 and AZ2 = -1.5; (2) A,, = A,, = A*, = A,, = 0; (3) A,, = 2.0, Al2 = 0, AZ1 = 14 and 

A,, = -1.5. 

compared to the in-diagonal term in the same row. 
A negative Sherwood number means that a com- 
ponent is transferred from the fluid to the wall. 

4. 

(5) Composition-dependent viscosity changes the 
boundary layer according to whether the viscosity 
is higher or lower than the ambient fluid. Increased 
viscosity leads to thicker boundary layers and smaller 
mass transfer rates and vice versa for a less viscous 
boundary layer. The sign of B,, B2 and B,+B, are 
important parameters determining the viscosity pro- 
file. 

5. 

6. 

7. 

(6) Effective binary diffusion coefficients, even when 
functions of composition, do not admit com~sitionai 
extrema. As such this approach cannot be used to 
approximate a ternary flow, and, by analogy, any 
multicomponent system with large off-diagonal 
elements. 

8. 

9. 

(7) Failure to properly account for diffusive coup- 
ling in multicomponent Bows can lead to invalid 
deductions for many systems of interest to geo- 
chemists, geologists and ceramic scientists, includ- 
ing boundary layer flows in large crustal magma 
reservoirs. 

10. 

11. 
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APPENDIX 

We have chosen an exponential function similar to equa- 
tion (2) for the dependence of diffusivities on composition 

D, = ~I,ewIA,fw+A124 VW 
b = &mw[A2,~,+&24. Wb) 

Now the fluxes given by equation (5) are rewritten using 
equations (Al) 

j, = -exp[Aii~,+A,,%]V~, (A2a) 

jl = -Bexp[A,,w,+At2w,]Vw,. Wb) 

Conservation equations given in equations (7) become 

~~+“~=~{~+A,,~~~+A,~~~~ 

xexp[A,,~~fA,,~~] (AW 

xexp[A2,01+A2u2]. (A3b) 

Finally, introduction of the stretching transformation into 
equations (A3) and setting SC = co yields the set of equations 
to be used in place of equations (7) 

~y;‘+~,,(~;)2+~~~v;y;]exp~~,,~,+~isyzl+f~~ =O 
(A4a) 

We retain the definition of Sh given in equations (10) with 
D, replaced by Di. Inserting the mass flux from equations 
(A2) and integrating leads to the composition dependent 
EBDC expression for Sh, 

Sh, = - 1.2408(Gr, SC) ‘14- [y’,(O) exp (A,, +A ,J] (A5a) 

Shl = - l.2408(Gr,Sc)“4*[y;(0)exp(A,,+A,,)]. (A5b) 

ECOULEMENT DE CONVECTION NATURELLE AVEC COUCHE LIMITE DANS DES 
SYSTEMES TERNAIRES ISOTHERMES : ROLE DU COUPLAGE DIFFUSIF 

Rbumr?-On etudie les effets de couplage croise diffusif sur une couche limite de convection naturelle 
isotherme dans un fluide a grand SC. Les rtsultats montrent que le coefficient de diffusion hors-diagonale 
est important lorsque le rapport approprie /.&/fiz2 ou p2,//3r2 est superieur a 10-i environ. Une diffusion et 
des extremas de composition resultants peuvent r&her de /I12 > & ou fi,* < 0 pour le composant 1 et de 
&, > 1 ou & < 0 pour le composant 2. Un ~ontr~ourant peut resulter de &i < 0 ou /& < 0 meme pour 
des rapports positifs de flottement. Des coefficients de diffusion binaire effective ne conviennent pas pour 
rep&enter des systemes multicomposants avec des grands coefficients de diffusion hors-diagonale. Des 
determinations publites de matrice de diffusion pour differents systemes multicomposants, en negligeant 
les contributions hors-diagonale aux flux chimiques, peuvent conduire a de fortes erreurs sur les flux de 

masse transfer&s dans des cas de systemes geochimiques et industriels importants. 
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GRENZSCHICHTSTRGMUNGEN BEI NATURLICHER KONVEKTION IN 
ISOTHERMEN TERNAREN GEMISCHEN-EINFLUSS DER ANKOPPLUNG DURCH 

DIFFUSION 

Zusammenfassung-Die Auswirkungen der diffusiven Querkopplung auf eine isotherme Grenzschicht bei 
nattirlicher Konvektion in einem Fluid mit groBer Schmidt-Zahl wurde untersucht. Die Ergebnisse zeigen, 
da6 das Nebenelement der Diffusionskoeffizientenmatrix dann wichtig ist, wenn das Verhlltnis br2/& oder 
jIzJ~zz grijger als etwa 0,l ist. Aufwlrtsdiffusion und dadurch bedingte Extremwerte in der Zu- 
sammensetzung konnen auftreten, wenn PI2 z pz2 oder Bu < 0 fur die Komponente 1 und /I*, > 1 oder 
/I*, < 0 fur die Komponente 2 ist. Gegenstriimung kann auftreten, wenn /&, 4 0 oder jI,2 < 0 ist, selbst 
beim Vorhandensein von Auftrieb. Effektive binlre Diffusionskoeffizienten sind ungeeignet, urn Viel- 
komponentensysteme mit groBen Nebenelementen in der Matrix der Diffusionskoeffizienten zu beschreiben. 
Verijffentlichungen der gesamten Diffusionsmatrix einiger Vielkomponentensysteme filhren zu dem SchluD, 
daB die Vemachllssigung der Anteile der Nebenelemente am chemischen Strom zu grol3en Fehlem bei 
den Stoffstriimen in Vielkomponentensystemen fiihren konnen, wie sie in Industrie und Geochemie 

vorkommen. 

ECTECTBEHHOKOHBEKTHBHbIE TEgEHWI B IIOI-PAHkiYHbIX CJIOJIX 
A30TEPMINECKHX TPEXKOMfIOHEHTHbIX CWCTEM: POJIP B3AMMOAWcPQY3MH 

Amio~lpeElccnenyexca nnHnmie B3aRMOJlH@49'3HH Ha H30repMHwcKHI eCTeCTBeHHOKOHBeKTHBHbIi% 

nOrpaHH~HbtficJ'Iofi B~~KOCTHC~~~~~HM~H~'I~HB~M~HC~~SC.~~~~~~T~~~OK~~~B~T,~T~H~~~~- 

rOHaJlbHbld K03@#iHWieHT nsi4l4ly3HH cyruecmHeH, Korna COOTBeTCTByEOLUR 0THoueHHe fi12/& HJIH 

&1/&2 6onbme _ 10-l. &w#@y3~n B Hanpaenewm OTpHuaTenbHoro rpaweHTaKoHuempamH Hum- 

pOBONGUOlUHe KOMIl03HWOHHbIe 3KKcrpeM)JMbl MOrp B03HHKaTb IIPH & > & HJIH PI2 < 0 QnK KOM- 
nouenrbr 1 u npu /321 > 1 HJIH /ml21 < 0 mn KoMlIoHeErTbI A. kpemoe TeqeHHe MOXeT B03HHKHyTb lIp&i 
jzl <O HJIH & <Onme AJIS nOJIOXCKTeJlbHbIX 0THOUIeHHi-i nOLlE.eMHblX CHJL3&jh?KTHBHbIe K03&$H- 
UHeHTbl 6eHapHoii LIH4N$y3HH HenpHrOiUibl JUIK IIpeACTaBJleHHK MHOrOKOMnOHeHTHbIX CHCTeM C 6onb- 
msrhfn HenHaroHaJIbHbIMH K03#lHUHeHTaMH AUi#Iy3HH. Ony6mKOBaHHMe pe3yJlbTaTbl n0 

OnpeAeJleHHEO nO~HOii~~y3HOHHO~MaTp~HeCIO~bKHXMHO~OKOMnOHeHTHblXCHCTeMnO~pa3yMe- 

BalOT, 4TO npeuo6percemie Hemal-OHUbHblMH BKJIWaMH B XHMH'ieCKHii nOTOK MOxeT LIaTb 6onbmne 
norpemnocrn B HHTeHCHBHocrnX MacconepeHoca B MHOl-OKOMnOHeHTHbIX cHcreMax, HMCIOWX reoxH- 


